Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Societal Impact StatementThe cultural significance of the grapevine is undeniable. However, we fail to acknowledge how the grapevine has and continues to influence the most pressing political questions of our time. From the beginning of the Conquest, Indigenous peoples were forced to plant the vine, Spain burned the vines Miguel Hidalgo used to teach the poor, and César Chávez and the Delano grape strike demanded justice for agricultural laborers. From theGrito de DolorestoSí se puede, we demonstrate how the continuing relationship between Mexico and the grapevine influences debates surrounding labor, immigration, and human rights in the United States and throughout the world. To enhance the reach of this work, a Spanish language version of the paper is available in the Supporting Information (see Translation_ES). SummaryThe wild grapevine species (Vitisspp.) that comprise the pedigrees of rootstocks, the Americas as the source (and solution) to thePhylloxeracrisis that decimated European vineyards, and California as a premier wine‐growing region are the topics that usually frame the history of grapes in North America. This Anglo‐American perspective ignores that domesticated grape varieties were first introduced to North America in what is now Mexico and the singular contributions of Mexican labor to the California wine economy that continue to influence politics. Here, we highlight the neglected history of grapevines in Mexico and argue that the politics of labor that played out during the Conquest never ceased and still shape debates surrounding immigration. Beginning with Hernán Cortés, Indigenous peoples were forced to plant grapevines and when they were successful, they were abruptly forbidden by Spain to grow grapes. This interference influenced Miguel Hidalgo, who taught the poor viticulture as a trade and who would lead the Mexican War of Independence and pay with his life. The grapevine continued its journey north to California, where Franciscans established the missions and cultivated the Mission grapes, which had lasting impacts on the genetics of grapevine varieties. Finally, it was the Delano grape strike that coalesced César Chávez and the United Farm Workers to demand justice for agricultural laborers that is the foundation of the California wine economy and still shapes the current political debate of immigration, labor, and human rights between the United States and Mexico.more » « lessFree, publicly-accessible full text available May 1, 2026
-
Abstract Interdisciplinarity is used to integrate and synthesize new research directions between scientific domains, but it is not the only means by which to generate novelty by bringing diverse perspectives together. Internationality draws upon cultural and linguistic diversity that can potentially impact interdisciplinarity as well. We created an interdisciplinary class originally intended to bridge computational and plant science that eventually became international in scope, including students from the United States and Mexico. We administered a survey over 4 years designed to evaluate student expertise. The first year of the survey included only US students and demonstrated that biology and computational student groups have distinct expertise but can learn the skills of the other group over the course of a semester. Modeling of survey responses shows that biological and computational science expertise is equally distributed between US and Mexico student groups, but that nonetheless, these groups can be predicted based on survey responses due to subspecialization within each domain. Unlike interdisciplinarity, differences arising from internationality are mostly static and do not change with educational intervention and include unique skills such as working across languages. We end by discussing a distinct form of interdisciplinarity that arises through internationality and the implications of globalizing research and education efforts.more » « less
-
Abstract PremiseThe selection ofArabidopsisas a model organism played a pivotal role in advancing genomic science. The competing frameworks to select an agricultural‐ or ecological‐based model species were rejected, in favor of building knowledge in a species that would facilitate genome‐enabled research. MethodsHere, we examine the ability of models based onArabidopsisgene expression data to predict tissue identity in other flowering plants. Comparing different machine learning algorithms, models trained and tested onArabidopsisdata achieved near perfect precision and recall values, whereas when tissue identity is predicted across the flowering plants using models trained onArabidopsisdata, precision values range from 0.69 to 0.74 and recall from 0.54 to 0.64. ResultsThe identity of belowground tissue can be predicted more accurately than other tissue types, and the ability to predict tissue identity is not correlated with phylogenetic distance fromArabidopsis.k‐nearest neighbors is the most successful algorithm, suggesting that gene expression signatures, rather than marker genes, are more valuable to create models for tissue and cell type prediction in plants. DiscussionOur data‐driven results highlight that the assertion that knowledge fromArabidopsisis translatable to other plants is not always true. Considering the current landscape of abundant sequencing data, we should reevaluate the scientific emphasis onArabidopsisand prioritize plant diversity.more » « lessFree, publicly-accessible full text available January 1, 2026
-
The field of plant science has grown dramatically in the past two decades, but global disparities and systemic inequalities persist. Here, we analyzed ~300,000 papers published over the past two decades to quantify disparities across nations, genders, and taxonomy in the plant science literature. Our analyses reveal striking geographical biases—affluent nations dominate the publishing landscape and vast areas of the globe have virtually no footprint in the literature. Authors in Northern America are cited nearly twice as many times as authors based in Sub-Saharan Africa and Latin America, despite publishing in journals with similar impact factors. Gender imbalances are similarly stark and show remarkably little improvement over time. Some of the most affluent nations have extremely male biased publication records, despite supposed improvements in gender equality. In addition, we find that most studies focus on economically important crop and model species, and a wealth of biodiversity is underrepresented in the literature. Taken together, our analyses reveal a problematic system of publication, with persistent imbalances that poorly capture the global wealth of scientific knowledge and biological diversity. We conclude by highlighting disparities that can be addressed immediately and offer suggestions for long-term solutions to improve equity in the plant sciences.more » « less
-
Drost, Hajk-Georg (Ed.)Since they emerged approximately 125 million years ago, flowering plants have evolved to dominate the terrestrial landscape and survive in the most inhospitable environments on earth. At their core, these adaptations have been shaped by changes in numerous, interconnected pathways and genes that collectively give rise to emergent biological phenomena. Linking gene expression to morphological outcomes remains a grand challenge in biology, and new approaches are needed to begin to address this gap. Here, we implemented topological data analysis (TDA) to summarize the high dimensionality and noisiness of gene expression data using lens functions that delineate plant tissue and stress responses. Using this framework, we created a topological representation of the shape of gene expression across plant evolution, development, and environment for the phylogenetically diverse flowering plants. The TDA-based Mapper graphs form a well-defined gradient of tissues from leaves to seeds, or from healthy to stressed samples, depending on the lens function. This suggests that there are distinct and conserved expression patterns across angiosperms that delineate different tissue types or responses to biotic and abiotic stresses. Genes that correlate with the tissue lens function are enriched in central processes such as photosynthetic, growth and development, housekeeping, or stress responses. Together, our results highlight the power of TDA for analyzing complex biological data and reveal a core expression backbone that defines plant form and function.more » « less
An official website of the United States government
